GREGORY J. PARKER

5 Sable Terrace Latham, NY 12110 518/783 7993 gjp@parker9.com

Objective:

Computational research physicist.

Work History:

April 2004 to present	GENERAL ELECTRIC GLOBAL RESEARCH, Niskayuna, NY, USA Physicist
	Optimization and efficiency of reverse osmosis via analytic and CFD modeling.
	Microstructure modeling by continuum percolation theory for solid oxide fuel
	cells to optimize porous bi/tri-phase connectivity, electrical conductivity and
	molecular diffusion for arbitrary Knudsen number. Created design tool for
	modeling of gas, liquid and particulate neutralization using porous membranes for personal protection suits. Extended and benchmarked electromagnetic simulations of dielectric/metal photonic crystals via FDTD and KKR methods
	Electrochemistry model and design tool for high power NaCl (i.e. Zebra) battery
	Field emission model and design tool for carbon nanotubes. Led team to assess
	feasibility of direct conversion of x-rays using the frequency response of
	ferroelectric materials. Electromagnetic microwave shield design and FDTD
	modeling for both consumer and military customers. Lead model/simulation with
	both internal and external teams including setting priorities, tasks and
	deliverables. Three patent applications and over 10 invention disclosures.
Nov. 1999 to July 2003	SEAGATE TECHNOLOGY, Pittsburgh, PA, USA
	Research Staff Member/Physicist
	Design, analyzed and critiqued current and future write/read technology for
	magnetic recording in consumer products 4-10 years into the future. Created self-
	consistent steady-state and dynamic simulations of micro-magnetic structures.
	Accurately predicted magnetic response and wave propagation in soft magnetic
	patterned devices. Correctly predicted limiting factors in perpendicular recording
	medium and alternative designs. Successfully modeled the magnetic, electrical
	and thermal behavior, including 'stochastic' methods, of various magnetic read
	sensors. Virgin B(H) modeling of magnetic structures. Over 20 invention
	disclosures, 11 patents.
June 1998 to Aug. 1999	LAWRENCE LIVERMORE NATIONAL LABORATORY, Livermore, CA,
	Dhysicist
	Created self consistent steady state and dynamic simulations of micro magnetic
	structures. Incorporated curved boundaries in 3D finite differencing algorithm
	Successful modeling of submicron patterned materials and media responses
Man 1007 to progert	Set E EMDLOVED
what. 1997 to present	SELL-EINILLO I ED

	Research Consultant/Contractor
	Multiple and varied contracts including LLNL, GE-CRD, AMAT, UC-Berkeley
	and Seagate Technology, LLC. Created, developed and applied kinetic
	simulations of vacuum and surface flashover processes. Refined and applied
	kinetic models of positive column discharges. Created and applied hybrid
	fluid/kinetic simulation codes for design of plasma switches for LCD addressing
	and PDP devices. Magnetized electron dynamics in 2D hydrodynamic
	simulations. 3D Monte Carlo simulations of magnetized CCP processing
	chambers. Created and applied 2D (axisymmetric) resonance radiation trapping
	model for positive column application. Extended model to allow for non-uniform
	absorbing gas density and non-uniform foreign gas collision broadening. Created
	and applied 3D micromagnetics code for write simulations on recording media,
	decreasing run time by a factor of four.
Mar. 1994 to Mar. 1997	LAWRENCE LIVERMORE NATIONAL LABORATORY, Livermore, CA,
	USA
	Postdoctoral Research Assistant
	Created kinetic simulations of low pressure- high plasma density plasma reactors.
	Developed and applied hybrid fluid/kinetic simulation codes to plasma
	processing tools and flat panel plasma displays. Developed new efficient
	algorithms for neutral transport and chemistry at low pressure. Applied new
	approaches for low energy ion implantation into crystalline solids. Developed and
	applied new kinetic algorithms to simulation of dc positive column. Developed
	new profiler for deposition/etching and coupled with low pressure neutral
	transport and chemistry modules. Kinetic algorithms for neutron scattering.
Jan. 1991 to Feb. 1994	UNIVERSITY OF WISCONSIN, Madision, WI, USA
	Research Assistant
	Created efficient and more physical plasma simulation code over previous model,
	decreasing run time by 500%. Successfully simulated helium rf and dc discharges
	fully self-consistently and kinetically. Developed new and efficient algorithms to
	describe resonant radiation transport. Matrix techniques to model low pressure
	neutral transport and ion implantation, kinetically. Modeled thermionic energy
	converters in cesium.
Jan. 1984 to Feb. 1989	VILLAGE OF SUSSEX, Sussex, WI, USA
	Software Programmer and System Administrator
	Designed, documented and implemented integrated software packages to perform
	general business accounting, payroll, billing and account receivables. Recruited,
	trained and led programming team. Reduced personnel costs by 50%.

Education:

Sept. 1989 to Feb. 1994	Ph.D., University of Wisconsin- Madison
_	Major: Physics Minor: Mathematics
Aug. 1985 to June 1989	B.S. with Honors, University of Wisconsin- Madison
	Majors: Physics and Mathematics
	Graduated with Distinction

Security Clearance:

Skills:

Expert mathematics/physics background: chemical, dynamical, EM, fluid (CFD), thermodynamics and transport modeling. FORTRAN (F77/95), Pascal, COBOL, BASIC, LISP, C/C++, MPI, LaTeX and HTML. UNIX/Linux, Macintosh, Windows administration. Strong oral and written communication skills.

References:

Available upon request.

Patents:

- 1. 6,621,664: "Perpendicular recording head having integrated read and write portions"
- 2. 6,654,209: "Low resistance lead structure for a low resistance magnetic read head"
- 3. 6,661,620: "Differential CPP sensor"
- 4. 6,724,583: "Adjustable permanent magnet bias"
- 5. 6,728,065: "Single pole magnetic recording head for perpendicular magnetic recording"
- 6. 6,785,092: "White head for high anisotropy media"
- 7. 6,813,115: "Perpendicular magnetic recording head with improved write field gradient"
- 8. 6,835,464: "Thin film device with perpendicular exchange"
- 9. 6,954,331: "Magnetic recording head including spatially-pumped spin wave mode writer"
- 10. 6,985,339: "Disc drive having electromagnetic biased shieldless CPP reader"
- 11. 7,099,121: "Perpendicular magnetic recording head having a reduced field under the return pole and minimal eddy current losses"
- 12. 20090160314: "Emissive structures and systems" (application)

Publications:

(only refereed)

- 1. G.J. Parker, W.N.G. Hitchon and J.E. Lawler, "Accelerated solution of the Boltzmann equation", *J. Comput. Phys.*, **106**, 147 (1993).
- 2. G.J. Parker, W.N.G. Hitchon and J.E. Lawler, "Kinetic modeling of the alpha to gamma transition in rf discharges", *Phys. of Fluids B*, **5**, 646 (1993).
- 3. G.J. Parker, W.N.G. Hitchon and J.E. Lawler, "Self-consistent kinetic model of an entire dc discharge", *Phys. Lett. A*, **174**, 308 (1993).
- 4. W.N.G. Hitchon, G.J. Parker and J.E. Lawler, "Physical and numerical verification of discharge calculations", *IEEE Trans. Plasma Sci.*, **21**, 228 (1993).
- 5. J.E. Lawler, G.J. Parker and W.N.G. Hitchon, "Radiation trapping simulations using the propagator function method", *J. Quant. Spectros. Radiat. Transfer*, **49**, 627 (1993).
- 6. G.J. Parker, W.N.G. Hitchon and J.E. Lawler, "Radiation trapping simulations using the propagator function method: complete and partial frequency redistribution", *J. Phys. B*, **26**, 4643, (1993).
- 7. W.N.G. Hitchon, G.J. Parker and J.E. Lawler, "Accurate models of collisions in glow discharge simulations", *IEEE Trans. Plasma Sci.*, **22**, 267, (1994).
- 8. G.J. Parker, W.N.G. Hitchon and J.E. Lawler, "Numerical solution of the Boltzmann equation in cylindrical geometry", *Phys. Rev. E*, **50**, 3210, (1994).
- 9. R.E.P. Harvey, W.N.G. Hitchon and G.J. Parker, "Plasma chemistry at long mean-free-paths", J.

Appl. Phys., 75, 1940, (1994).

- 10. R.E.P. Harvey, W.N.G. Hitchon and G.J. Parker, "The role of the plasma in the chemistry of low pressure plasma etchers", *IEEE Trans. Plasma Sci.*, **23**, 436 (1995).
- 11. G.J. Parker, W.N.G. Hitchon and D.J. Koch, "Transport of sputtered neutral particles", *Phys. Rev. E*, **51**, 3694, (1995).
- 12. A.F. Molisch, G.J. Parker, B.P. Oehry, W. Schupita and G. Magerl, "Radiation trapping with partial frequency redistribution: comparison of approximations and exact solutions", *J. Quant. Spectros. Radiat. Transfer*, **53**, 269, (1995).
- 13. V.I. Kolobov, G.J. Parker and W.N.G. Hitchon, "Modeling of non-local electron kinetics in a low pressure inductively coupled plasma", *Phys. Rev. E*, **53**, 1110, (1996).
- 14. P. Vitello, J.N. Bardsley, G. DiPeso and G.J. Parker, "Modeling an inductively coupled plasma reactor with chlorine chemistry", *IEEE Trans. Plasma Sci.*, **24**, 123, (1996).
- 15. G.J. Parker, W.N.G. Hitchon and E.R. Keiter, "Modeling ion transport during ion implantation", *Phys. Rev. E*, **54**, 938, (1996).
- 16. J.P. Verboncoeur, G.J. Parker, B.M. Penetrante and W.L. Morgan, "Comparision of collision rates in PIC-MCC, Monte Carlo and Boltzmann codes", *J. App. Phys.*, **80**, 1299, (1996).
- 17. U. Kortshagen, G.J. Parker and J.E. Lawler, "Comparison of Monte Carlo simulations and nonlocal calculations of the electron distribution in a positive column plasma", *Phys. Rev. E*, **54**, 6746, (1996).
- 18. G.J. Parker and W.N.G. Hitchon, "Comparison of Convected Scheme and Monte Carlo simulations of the electron distribution in a positive column plasma", *Jap. J. App. Phys.*, **7B**, 4799, (1997).
- 19. K.J. Ilcisin, T.S. Buzak and G.J. Parker, "The switching dynamics of the plasma addressed liquid crystal display", *J. Phys. IV France*, **7**, C4-225, (1997).
- G.J. Parker and W.N.G. Hitchon, "Convected Scheme simulations of glow discharges", *Electron Kinetics and Applications of Glow Discharges*, ed. U.Kortshagen and L.D.Tsendin (NATO ASI Series: Plenum Press) Series B: Physics 367, 75, (1998).
- 21. M.R. Gibbons, G.J. Parker, C.J. Cerjan and D.W. Hewett, "Finite difference micromagnetic simulation with self-consistent currents and smooth surfaces", *Physica B*, **275**, n1-3, (2000).
- 22. G.J. Parker, C.J. Cerjan and D.W. Hewett, "Embedded curve boundary method for micromagnetic simulations", *J. Magn. Magn. Mater.*, **214**, 130, (2000).
- G.J. Parker and C.J. Cerjan, "Micromagnetic simulations of submicron cobalt dots", J. Appl. Phys., 87, 5513, (2000).
- 24. J. Van Ek, A. Shukh, E. Murdock, G. Parker and S. Batra, "Micromagnetic perpendicular recording model: Soft magnetic underlayer and skew effect", *J. Magn. Magn. Mater.*, **235**, 408, (2001).
- 25. G. Ju, et al., "High frequency dynamics of the soft underlayer in perpendicular recording system", *J. Appl. Phys.*, **91**, 8052, (2002).
- 26. T.A. Roscamp, E.D. Boerner and G.J. Parker, "Three-dimensional modeling of perpendicular reading with a soft underlayer", *J. Appl. Phys.*, **91**, 8366, (2002).
- 27. M. Covington, T.M. Crawford and G.J. Parker, "Time-resolved measurement of propagating spin waves in ferromagnetic thin films", *Phys. Rev. Lett.*, **89**, 237202, (2002).
- 28. T.M. Crawford, M. Covington and G.J. Parker, "Time-domain excitation of quantized magnetostatic spin-wave modes in patterned NiFe thin film ensembles", *Phys. Rev. B*, **67**, 024411, (2003).
- 29. Charles Brucker, et al., "Perpendicular media: alloy versus multilayer", *IEEE Trans. on Magnetics*, **39**, 673, (2003).
- 30. A. Rebei and G.J. Parker, "Fluctuations and dissipation of coherent magnetization", *Phys. Rev. B*, **67**, 104434, (2003).
- 31. A. Rebei, M. Simionato and G.J. Parker, "Correlation functions of the magnetization in thin films", *Phys. Rev. B*, **69**, 134412, (2004).
- 32. M. Covington, A. Rebei, G.J. Parker and M.A. Seigler, "Spin momentum transfer in current perpendicular to the plane spin valves", *Appl. Phys. Lett.*, **84**, 3103, (2004).
- 33. M. Covington, M. AlHaijDarwish, Y. Ding, A. Rebei, G.J. Parker, N. Gokemeijer and M.A. Seigler,

"Spin transfer effects in current perpendicular to the plane spin valves", J. Magn. Magn. Mater., 287, 325, (2005).

- B. Ramamurthi, G. Parker, V. Midha, J. Ruud and T. Striker, "Performance modeling of solid oxide fuel cells with a mixed conducting cathode", *Electrochemical Society Proceedings*, PV 2005-07, 689, (2005).
- 35. A. Rebei, W.N.G. Hitchon and G.J. Parker, "sd-exchange interaction in a non-homogeneous ferromagnet" *Phys. Rev. B*, **72**, 064408, (2005).
- 36. W. Scholz, et al., "Fast magnetization switching with circularly polarized fields and short pulses" *IEEE Trans. on Magnetics*, **44**, (2008).

Conferences:

- 1. Gaseous Electronics Conference, 1991, Albuquerque, NM, USA, 1 contributed paper.
- 2. 27th Intersociety Energy Conversion Engineering Conference, 1992, San Diego, CA, USA, 1 contributed paper.
- 3. Gaseous Electronics Conference, 1992, Boston, MA, USA, 2 contributed papers.
- 4. Gaseous Electronics Conference, 1993, Montreal, Canada, 4 contributed papers.
- 5. Gaseous Electronics Conference, 1994, Gaithersburg, Maryland, USA, 1 invited, 4 contributed papers.
- 6. International Conference on Plasma Science, 1995, Madison, WI, USA, 1 invited, 4 contributed papers.
- 7. Gaseous Electronics Conference, 1995, Berkeley, CA, USA, 1 invited, 4 contributed papers.
- 8. American Physical Society, 1995, Louisville, KY, USA, 1 contributed paper.
- 9. Gaseous Electronics Conference, 1996, Argonne, Illinois, USA, 1 invited, 4 contributed papers.
- 10. International Conference on Plasma Science, 1997, San Diego, CA, USA, 1 invited paper.
- 11. Gaseous Electronics Conference, 1997, Madison, WI, USA, 1 contributed talk.
- 12. Third International Conference on Reactive Plasmas and the Fourteenth Symposium on Plasma Processing, 1997, Japan, invited talk.
- 13. *NATO Advanced Research Workshop* devoted to "Electron kinetics and applications of glow discharges", 1997, St. Petersburg, Russia, invited talk.
- 14. XXIII International Conference on Phenomena in Ionized Gases, 1997, Toulouse, France, invited talk.
- 15. Gordon Research Conference on Plasma Processing Science, 1998, Telton School, NH, USA, invited talk.
- 16. Gaseous Electronics Conference, 1998, Maui, HI, USA, 4 contributed papers.
- 17. Hysteresis Modeling and Micromagnetics, 1999, Perugia, Italy, 1 contributed paper.
- 18. Magnetics and Magnetic Materials, 1999, San Jose, CA, USA, 1 contributed paper.
- 19. International Conference on Plasma Science, 2000, New Orleans, LA, USA, 1 contributed paper.
- 20. Magnetics and Magnetic Materials/Intermag, 2001, San Antonio, TX, USA, 3 contributed papers.
- 21. Magnetics and Magnetic Materials, 2001, Seattle, WA, USA, 4 contributed papers.
- 22. Magnetics and Magnetic Materials, 2002, Tampa, FL, USA, 1 invited, 3 contributed papers.
- 23. The XVIII International Colloquium on Magnetic Films and Surfaces, 2003, Madrid, Spain, 1 contributed paper.
- 24. Ninth International Symposium on Solid Oxide Fuel Cells, 207th Meeting of The Electrochemistry Society, 2005, Quebec City, Canada, 1 contributed paper.
- 25. Magnetics Conference/Intermag 2006, San Diego, CA, USA, 1 contributed paper.